If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+4t-36=0
a = 1; b = 4; c = -36;
Δ = b2-4ac
Δ = 42-4·1·(-36)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*1}=\frac{-4-4\sqrt{10}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*1}=\frac{-4+4\sqrt{10}}{2} $
| 1m+3=9m-3 | | X+23=7x+7 | | 34x-18=10x9 | | -3(x-8)-2=28 | | 4(3x-2)+10=38 | | n-2=10-5n | | 10r+4=2r-3=r | | -5.5(d-2)=-12/1 | | 3(3p+3)=+5(3p−3) | | 46=-8+6d | | 5+7m=7m+5 | | -8x+14=-8(x+7) | | -7-3=4x+4-3x | | 120x•40=180•20 | | b3+ 2=3 | | 6a-40=4(1+7a) | | b/19+7=7 | | 5p+12=32 | | -2(6+d)=-8 | | 2(w-5=7w+4 | | 3(g-80)=60 | | 9x+10=8x-15 | | 2/3e+1/2e=7 | | 90=6(2v-1) | | 1.5(3x-8)=10.5 | | 12-5x=x8 | | 7x-2x-10)=40 | | z/2+23=33 | | -8f-6=8f | | 5(x+2)+17=8+51 | | -7x-4x=9-5x+6 | | -5+3r=1+1r |